If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-63x=0
a = 81; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·81·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*81}=\frac{0}{162} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*81}=\frac{126}{162} =7/9 $
| 8(x+2)=-32+2x | | (X•6)(y•4)=288 | | -5/x-2=-1/x+4 | | 4/5n-5=3 | | 4/5*n-5=3 | | (3x-8)(6x+4)=0 | | 7(x+2)=-32+2x | | 3400*x=100 | | x/3-9=6 | | 3x-8)(6x+4)=0 | | x-9=6 3 | | 2x+5=8x,12x= | | 32=8^x | | 5n-6=n+12 | | (3x-5)^2=81 | | 4t^2+20t-280=0 | | 45-5*(3x+16)=+3*(x-7)-(x+1) | | 2(3n+1)=5+6n | | x/8=8 | | x=8 8 | | 6(3x-1)-4x-5=-3 | | 5-(2/x)+(1/x^2)=0 | | 3x^2=2(x-1)= | | 7/4x-9=1 | | 3x+8=21/2×x | | x-4+2x=5+x=1 | | -5(3x-5)=-14 | | 9x2+30x+25= | | -32+8n=6(-6n+2) | | 98=u/7 | | x-1.5=3.7 | | 4(-3x-1)=12x-2 |